100分阅读网 > 科幻小说 > 四进制造物主 > 001 上一章注释[001]
【写在8月25日20:53,发布后发现上下标给我全滤了,我调整一下,过会儿再看】


硬核程度:☆☆☆☆☆


涉及领域:计算理论


大标题:三种函数外加三种操作怎样解决所有可计算问题?为什么偏递归函数可以制造无限循环?


可能是全网最不报菜名、最不装比的解释。


以下开始:


首先,什么是可计算?


可计算就是指,有一个算法,我们把它交付给计算机后,计算机可以像执行一个函数一样,接受我们给它的输入,然后返回输出,这个输出就是我们想要的答案。


为了方便描述,先行约定一下数学符号。


假设我们有一个乘法器,叫做mult,它可以接受一对整数作为输入,把它们相乘后输出一个整数。


比如,输入(3,4)输出12


输入(6,2)输出12


输入(0,6)输出0


这时,我们把这些输入数对叫做dmain,输出的一个数叫做cdmain。如果我们用Z来代表全体整数集,那么这个平平无奇的乘法器就可以用数学符号表示为:


mult:Z^2→Z


中间的这个→表示这个mult是一个ttalfunctin,也许可以称作“全函数”吧,意思是每一个dmain里的输入,都能对应一个cdmain里的输出。


与全函数相对应的是,是“偏函数”。对于偏函数,对于有些输入,它并不能给出输出。比如一个除法器,当我们给它(6,0)时,它输出不了任何东西。这个除法器可以表示为:


div:Z^2—Z


这里的单横线代表这是一个偏函数(其实应该用半箭头表示,但在这里打不出来)


好了,定义好符号之后,就可以清爽地描述我们的三种基本函数:后继函数、零函数、投影函数。


后继函数:succ:N→N,succ(x)=x+1,N代表自然数集。我们给它2,它输出3;给它3它输出4。总之就是往上+1.


零函数:ze:Nn→N,ze()=0。不管给它什么,它都输出0.


投影函数:pjn:Nn→N,pjin(x1,...,xn)=xi。它接受长度为n的输入,输出第i个自然数。比如,pj22(1,3)=3。


好了,盖大楼的砖块一共就这么三种,接下来把它们组合在一起就行了。


我们定义一个叫“组合”的函数f,它的功能是把n个函数组合在一起:


f:Nn—N


具体的,如果每一个被组合的函数都可以接受同一组参数(x1,...,xm),那么组合n个函数的操作可以被表示为:


f·[1,...,n]:Nm—N


展开为:


f·[1,...,n](x1,...,xm)=f(1(x1,...,xm),...,n(x1,...,xm))


举个栗子:


我们构造一个函数ne,ne(x)=1,即:不论给它什么输入,它都输出为1,那么:


ne(x)=succ(0)=succ(ze(x))


即:succ·[ze]=ne


验证一下:


succ·[ze](x)=succ(ze(x))=succ(0)=1


succ和ze两个基本函数组成了我们要的ne,完美。


如果栗子再复杂一点,我们想要一个加法器add,add(x,y)=x+y,怎么用那三种基本函数组合?


也很简单,从具体输入入手:


add(3,2)=succ(add(3,1))=succ(succ(add(3,0)))=succ(succ(3))


似乎只需要组合多个后继函数就可以了呢。


当然,这里面有一个毛病,在于我们在没有定义好add的前提下,先入为主地认为add(3,0)=3.


所以我们不能认为自己就这么简单地构造了add,只能退而求其次地得到以下关系:


add(x,y+1)=succ(add(x,y)),这个式子是十分严谨的。


更具体地,要想算出add(x,y+1),就要知道add(x,0)=x,我们称add(x,0)=x为基准条件;add(x,y+1)=succ(add(x,y))为递归条件。


看起来就差临门一脚了,只要我们能用三种基本函数构造出add(x,0)=x,就能得到add(x,y+1),也就能构造出我们想要的加法器。


也很显然,add(x,0)=x=pj11


于是,我们的加法器有了。


这种看起来很像左脚踩右脚登天的构造方式叫做“原始递归”,它的定义是这样的:


基准函数f:Nn—N


递归函数:Nn+2—N


使用f和的原始递归h=ρn(f,):Nn+1—N